
Using Face Detection as a Game Input Device

Andrew Brusso

Michigan Technological University

April 25, 2020

Andrew Brusso (MTU) Face Detection I/O April 25, 2020 1 / 11



What I Wanted to Accomplish

1 Create a game controlled using a webcam.

2 Use OpenCV for image processing and facial detection.

3 Understand basic aspects of the Unity3D game engine.

4 Familiarize myself with Python and C#.

Andrew Brusso (MTU) Face Detection I/O April 25, 2020 2 / 11



The Challenges

No OpenCV, Unity3D, C#, or game development experience.
Limited Python experience.

Webcams are noisy input devices, and don’t generally have a high
framerate.

Unity doesn’t have native ways to handle custom input devices or
running python code.

Facial Detection is a hard problem to solve from scratch (good
solutions require deep neural nets).

Andrew Brusso (MTU) Face Detection I/O April 25, 2020 3 / 11



How I handled: Using a New Toolkit

For OpenCV and Unity:
followed lots of tutorials to learn
the basics.

The Unity tutorials helped a lot
with C#, but its syntax is also
similar to C++.

Unity tutorial series by Brackeys

Andrew Brusso (MTU) Face Detection I/O April 25, 2020 4 / 11



How I handled: Reining in Latency, Reducing Noise

I/O operations are slow:

Created 3 separate threads for retrieving frames from camera, sending
them to unity, and the actual processing pipeline.

Cameras are noisy:

Used an averaging filter to help smooth inputs out.
Used Unity function RotateTowards, which does a smoothed out
rotation overtime to fill in frames where data is missing.

Andrew Brusso (MTU) Face Detection I/O April 25, 2020 5 / 11



How I handled: Unity not Having Native/Standard Options

To run Python, tried:

IronPython – An implementation in C# of the
Python Interpreter – issues with library
support.
Creating a new process running Python in
C#, this worked well.

To create a custom input device:

Used a networking library called ZeroMQ
(NetMQ in C#).
Communication over loopback address from a
camera server to client inside of Unity.

Andrew Brusso (MTU) Face Detection I/O April 25, 2020 6 / 11



How I handled: Doing Face Detection

Used library Dlib, which has
built in Deep Learning classifiers
optimized for facial detection.

Dlib has a shape prediction
model, which can identify facial
landmarks such as eyes, nose,
face outline, and mouth.

Focused on face orientation, by
eye positions relative to each
other.

Andrew Brusso (MTU) Face Detection I/O April 25, 2020 7 / 11



The Results

Andrew Brusso (MTU) Face Detection I/O April 25, 2020 8 / 11



The Results

Andrew Brusso (MTU) Face Detection I/O April 25, 2020 9 / 11



Possible Future work

Detect eye closing. Use this as a mechanism for freezing the player.
Player would have to keep track of timings while eyes closed.

Improve some of the game aspects, such as more level designs and
game mechanic ideas, since focus has been on face detection and
integration so far.

Andrew Brusso (MTU) Face Detection I/O April 25, 2020 10 / 11



Retrospective

Latency and accuracy are challenging to balance in a way that makes
the controls feel responsive.

Controlling using webcam face detection is cool, doesn’t require
expensive hardware, and I could see it being a useful input device for
people with motor impairments.

Andrew Brusso (MTU) Face Detection I/O April 25, 2020 11 / 11


