
Text Generation with Recurrent Neural Networks
Andrew Brusso

Computer Science
Michigan Technological University

Houghton, United States

Abstract—A research project exploring techniques for using
Recurrent Neural Networks for the problem of Natural Language
Generation, a key problem in ongoing cutting edge Natural
Language Processing research.

Index Terms—text generation, natural language processing,
machine learning, supervised learning, recurrent neural networks

I. BACKGROUND

The problem of Natural Language Generation (NLG) is
by no means new, despite the most visible applications such
as autocompletion and virtual assistants only appearing in
the past decade. Some trace the history of the more general
domain of Natural Language Processing (NLP) as far back
as renaissance philosophers such as Descartes and Leibniz
in the seventeenth century, who were proposing early ideas
for machine translation between different languages using
encodings. Others trace the history back to Alan Turing’s
paper on Computing Machinery and Intelligence [13], which
proposed a way of testing the effectiveness of a NLG technique
by pitting it against a human participant.

In a practical sense, the first actual application of NLP is
probably the Georgetown experiment in 1954, which proposed
a technique for translating a number of Russian sentences
into English. The experimenters made the bold claim that
in “five, perhaps three, years hence, interlingual meaning
conversion by electronic process in important functional areas
of several languages may well be an accomplished fact” [5].
The first chatbot in 1964, ELIZA, might be considered the first
true application of NLG. These early techniques in Natural
Language Processing and Generation were almost entirely rule
or template based approaches, and this remained the case well
into the early 1980s. A rule would be written for how to
respond to text in a particular format, and would be used to
map an input text to a reasonable output text. For example
a rule might look like “I am interested in *” and the rule
might map to an output that reuses the wildcard such as
“Yes, * is very interesting”. The complexity of rules and
templates improved considerably over time, often in parallel
to improvements in compiler and language theory which
represented similar problem approaches. In the 1980s, early
machine learning concepts were being proposed and applied in
limited scopes using probabilistic approaches (such as n-gram
models), but the problem of general generation and translation
remained elusive into the early 2000s. Probablistic models
were improving, but they were often heavily supervised, and
mostly used handwritten text with machine learning backing

the selection process of the response or result text, rather than
generating entirely novel text.

A short publication by Mikolov et. al [6] in 2010 pointed
towards the potential of Recurrent Neural Networks (RNNs)
for NLP problems, with promising results compared to existing
techniques that focused on n-gram sequences. The first break-
through into more novel text generation happened in 2011
with a landmark paper by Sutskever, Martens, and Hinton
[8] that proposed using RNNs to learn how to generate text
without hand written rules. As this idea expanded further,
it developed alongside advances in RNNs, first applying the
concept of Long Short-Term Memory (LSTM) and then Gated
Recurrent Units (GRU) to deal with issues of exploding and
vanishing gradients while training the network via Backpro-
pogation Through time (BPTT). This advancement showed the
initial potential of the approach by showing that RNNs with
LSTMs could capture complex aspects of sentence structure
and grammar (although poorly initially). Alex Graves in 2013
showed with the explosion of deep learning, that stacking more
hidden layers combined with memory units, and using larger
datasets, could generate surprisingly good structure through
simple approaches [3]. Shortly after, Sutskever, Vinyals and
Le [9] were working on the problem of machine transla-
tion and proposed the Seq2Seq architecture as a powerful
deep learning tool to capture context in generative models,
with promising results that soon made their way into google
translation architectures. An explosion of different approaches
and results soon occurred focused on improving contextual
awareness [10], dialog systems [14], emotional components
[7], and more aspects of generated text. Open AI released the
first commercial all purpose text generator, GPT-2 in 2019,
and with it threw down the gauntlet. Google’s Deepmind team
responded in kind in January 2020 with their conversational
agent Meena [1], and with that the NLP field has become more
lucrative than ever.

II. MY RESEARCH

A. Getting a basic model

For my research, I wanted to explore the concept of using
RNNs for text generation, but I also wanted to be realistic with
what I would be able to accomplish in the limited time I would
have to work on the project. Realistically, I didn’t expect to do
something completely novel, or to have results comparable to
the current cutting edge approaches, because there are teams of
people with significantly more experience and time working on
them. What I did want to accomplish was learning more about



the problem of text generation, what some of the historical
solutions to the problem looked like, what some of the more
modern solutions looked liked, and the direction that the
cutting edge research is moving in. Instead of jumping straight
into trying to build a Seq2Seq architecture of my own, and
likely struggling with it the whole term, I decided to start with
a more simple RNN that I know I could feasibly implement,
and then work my way towards understanding some of the
nuances of more complicated Seq2Seq architectures.

I started things off by reading and understanding the original
1997 paper that proposed using an LSTM to address the
vanishing/exploding gradient problem [4], as well as the
foundational RNN papers [8] [3] for modern NLG with deep
learning. With those papers in mind, I started off building
a basis using a tutorial on text generation with Tensorflow
[2], to build what I will refer to as my basic model. This
tutorial utilizes a text generation approach based on a many
to one RNN architecture, where the input of the model is a
sequence (in the article the sequence length is 100 characters),
and the output is a single character predicted to occur as the
next character in the sequence. The method in this tutorial
does work, but I found that the performance I was getting
with my output didn’t seem to align very well with the results
they showed–my end results were very repetitive, and lacked
significant structure. With this tutorial, it was also taking a very
long time to train the network (I was training overnight and
finding it still running in the morning). I eventually followed
the Tensorflow guide for using GPU acceleration [11], to
instead train on my GPU. This did speed things up quite a
bit, but I was still running into memory bottlenecks. With this
model in my back pocket, I started branching out to find other
approaches that might work better.

B. Making an Improved Model

After having a model that sort of worked, I happened across
the official Tensorflow article on text generation [12], which
I utilized to augment my network to try and address some of
the key issues I was seeing, and create what I will refer to as
the improved network. There are four significant changes from
this article that I implemented into my network, which caused
valuable improvements. The first was using the Tensorflow
Dataset class, which does a much better job of memory
management during training than the basic model, because
it buffers the amount of the dataset that is kept in memory to
make sure it doesn’t max out the memory of the system. The
second change had to do with the method of inputting and
outputting the training sequences into and out of the network,
which the basic model was doing with a technique called one-
hot encoding. With one-hot encoding, every character of the
training data is encoded into a sparse vector, where every value
in the vector is zero, except the specific index corresponding
to the particular character being encoded, which has a value
of one. Because of the sparseness of these vectors, the number
of parameters the network needs to learn is forced artificially
high. The Tensorflow article introduced me to the concept of
using an embedding layer, where instead of explicitly encoding

the vectors, the network is trained to learn a significantly
more efficient representation automatically, which reduces the
overall dimensionality of what the network learns (and also
has the advantage of grouping characters that are more similar
together). The third change, which was the most important
with respect to the results, was using a temperature adjustment
to inject randomness into the network output. Initially, the
selection of the output character of the network was being
done using the argmax function, which takes the networks
softmax output, and blindly chooses the character that the
model is most confident in. It may seem counter intuitive,
but always choosing the value the model is most confident
about is what causes looping behavior, because once an input
sequence starts generating the same output as it is receiving
as input, the output makes its way back into the input and
eventually creates cyclical text. The idea with temperature is
that we sample from a probability distribution based on the
network’s confidence, so that there is some probability that
other less confident values can show up in the output. The
temperature itself is used to bias the probability distribution
that is sampled from, where small temperature values bias
the distribution more towards argmax-like behavior, and large
values bias it closer towards a uniform distribution. The fourth
change is that the basic model treated the problem as a many to
one sequence problem, while the Tensorflow article treats it as
a many to many sequence problem. In the article, instead of the
output only being the single desired character to be predicted,
it shifts the entire sequence forward a character, and tries to
train so that it predicts the next character for every single
character in the sequence. This is only used for the training,
and then for actually running the network for generation only
a single character is predicted from the network at a time, but
this training approach seems to significantly strengthen the
connections that the model ends up learning.

Characters Words
Facebook 519,898 93,526
Discord 780,503 137,887
Essays 259,593 44,447
Total 1,559,994 275,860

Fig. 1. The distribution of characters and words in the dataset that I generated

C. Gathering a dataset

Up until this point, I was using the works of Shakespeare
and Alice in Wonderland 1 as my data sources for training
and testing the network. This was when I started gathering
data from my own data sources, to build out a dataset that I
felt could be representative of my own writing style. There
was three data sources I pulled textual data from: Discord,
Facebook Messenger, and a collection of school essays and

1I think it is funny that Alice in Wonderland shows up often in the NLG
literature, because if your model generates nonsense output you can always
fall back on claiming it is because it was trained on nonsense (as Alice
in Wonderland is classified as the foremost example of the genre literary
nonsense).



reports I have written. For discord, I had done previous work
with the discord python api, and had a server that I had a
significant number of messages on, so I pulled all the messages
I had sent from this server to comprise the discord data set.
For Facebook Messenger, I had downloaded a full extract of
my profile, so I wrote a number of scripts to pull just the
messages that I had sent from this extract, which comprised
the Facebook Messenger data set. Finally, I combined digital
copies of all of the essays and reports that I had written since
Middle School, which comprised the Essay and Report dataset.
Together, these datasets are quantified in Fig. 1, and comprise
the majority of digitally written text that I have personally
written dating back to middle school, so I suspected they
would give me the best chance of building and training a model
that generates text reasonably close to how I write. To simplify
the dataset a bit, I converted all text to lowercase, and removed
a lot of special characters that might negatively impact the
results by introducing unnecessary additional classes to the
vocabulary (such as $, #, &, * and others).

As a note, due to the personal nature of the dataset, I
decided not to include the full dataset itself with my project
submission, just the trained models and the Shakespearean
and Alice in Wonderland corpuses that I trained some of my
models on. There is not anything particularly special about
the dataset I built though, other than that it consisted of text
that I had personally written, any large corpus of text could
reasonably be used to make a similar dataset. The structure
of the dataset was one line per message that I had sent for
the messages, and one line per paragraph for the essays I had
written. When the model generates new line characters, the
implication therefore is that everything after the new line is a
distinct message or thought.

D. Creating a platform for testing

After having a few models and datasets to build off of,
I wanted to create some type of system for trying out the
different models I had built and comparing how they perform
qualitatively. To this end, I pulled from some previous work
I had done with the Django web framework to start building
a page for quickly selecting a model and the parameters for
it (see Fig. 2). The first step of this process was exporting
the models I had made so far, and keeping track of all
the necessary files to utilize the models, which includes a
model.h5 file that completely describes the model, and a token-
map.json file which I export to retain the token-to-number
mapping used by the model to convert from text to numbers
the model can understand (since for any given source corpus
this mapping may change).

The page is a fairly basic single page app built with Django
and some ancillary technologies to make it work as intended.
After selecting a specific model and the parameters to use
when running it, the page dispatches a request to generate
text using the specified parameters. The requested page then
uses Tensorflow to load the specified RNN model, and then
based on the provided parameters will generate text using
the loaded model. To make things portable, I developed the

page within a docker container, so that the code can easily
be built and deployed in any environment for use. With this
important infrastructure built out, I was now more comfortable
getting more adventurous with my model and trying some
more significant changes to it with the knowledge that I had
the old models available and still functional.

E. Trying new things

Now that I was more comfortable with being able to change
my model, I started making lots of small tweaks to the
structure of the network. I had seen a lot of the source literature
using Bidirectional RNNs (BRNNs), so I initially tried using
those in place of the normal RNNs I had used. BRNNs are the
same as regular RNNs, but they pass information backwards
in time as well as forwards in time, meaning that connections
going backward could be utilized as well, implying additional
information capture. What I failed to realize while I was trying
this out is that the usage of the BRNNs was specifically in
the Seq2Seq infrastructures for the Encoding layers. I was
surprised to find that BRNNs were negatively impacting the
results of the network, and spent some time trying to find out
why it seemed like other’s were using them successfully but
I was not. What I found is that due to the way BRNNS are
implemented in Tensorflow, the training it was doing wasn’t
actually training on the correct pieces of the sequence that I
wanted it to. If I switched back to the many to one architecture
I might be able to easily utilize BRNNs, but at an even more
significant training cost, which would have problematic.

I also tried out using a word based model instead of a
character based model, which I will refer to as the word
model. In a character based model, the fundamental unit
that the model is being trained on and told to predict is
an individual character. In a word based model, this unit is
shifted to instead be individual words. From the literature,
the general consensus seems to be that a word based model
generally yields better results overall, but is more difficult to
train for the same set of text. In a character based model, if
you limit yourself to an ASCII character set then you limit the
number of characters you have to be able to predict correctly
to be 256. With a word based model, the number of classes
explodes, because every word is a possible class that you need
to predict, which for my model meant tens of thousands of
classes that need to be trained for. There is a bit of give
and take with the comparison between the approaches as well,
because if your corpus isn’t diverse enough then it might do
a good job of learning individual characters, but a poor job of
learning a wide range of words, or vice versa depending on
the way words and characters end up being distributed. The
character based model is often considered more impressive and
flexible, because it has to learn not only sentence structure and
grammar, but how words are built up using prefixes, suffixes
and roots. Due to the temperature adjustments, the character
based model necessarily makes mistakes within words that, for
a really good model, might give it away. At the same time, the
word based model is incapable of spelling things wrong unless
they were spelled wrong in the corpus text, which is its own



Fig. 2. The page I built for testing and comparing the models dynamically.

form of a give away, as humans do often spell things wrong. I
initially had significant issues training my word based model,
which lead me to wondering why the model was considered
more powerful overall. Eventually I pinpointed the problem
as being a combination of having too many parameters in
my overall network, and using sequences that were much
too long to successfully capture sentence structure well. I
found that with words, sequences of lengths close to 20 words
long did a good job of capturing sentence structures, whereas
longer length sequences started having issues, since the more
sentences you include in your training examples the more
unrelated information you start to capture unintentionally.

F. My Results

In the literature, a BLEU (bilingual evaluation understudy)
score is often used to assess results quantitatively for genera-
tive models. A BLEU score is typically calculated by taking
a source text and translating it using one or more humans
as well as a machine translator. The human translated text is
called the reference text, and the text generated by the machine
translator is called the candidate text. The BLEU score is used
to calculate how different the candidate translation is from a
set of reference translations. The more n-grams (sequences
of n words) that appear in the candidate that also appear in
the reference sequences, the higher the BLEU score will be,
and the closer the candidate is considered to the reference
text. I could have calculated a BLEU score for my models,
but they are normally reserved for the domain of machine
translation. Technically, most of my models are trained as

machine translators, but when they actually are generating
text they are treated as sequence classifiers. This makes the
value of calculating a BLEU score a bit dubious, until I’ve
transitioned to using a Seq2Seq model where the model will
be translating from a context sequence to an output sequence.
What the literature also commonly does, which I think is
much more important for where my project is currently at,
is show qualitative results of the models. This helps to show
the progression of the models over time with examples that are
more clearly understandable and apparent to a reader. BLEU
scores are a great tool, and have been shown to match well
with human intuition, making them very useful for comparing
two texts that are already pretty good. For the results that I’ve
attained thus far, I don’t think a BLEU score is necessary
to show the differences between my models, and my models
aren’t really well suited for calculating a BLEU score.

Qualitatively, Fig. 3 shows a comparison between the differ-
ent models I have created so far. The character models (basic
and improved) were asked to generate 400 characters, and the
word models were asked to generate 200 words. All models
were given the same seed text of ”My goal as a text generator
is”, and the models with temperature adjustments had their
temperatures tweaked to values that generated text that was
appropriately random while retaining structure.

Looking first at the basic model, it is immediately apparent
why the temperature adjustment is needed. The model loops
after a few words, so the output isn’t too interesting. What is
interesting though is the way the model is generating things,
because it is selecting each character one at a time, meaning



Model Output Example
Basic My goal as a text generator is the problem of the stuff is the problem that is the problem

of the stuff is the problem that is the problem of the stuff is the problem that is the
problem of the stuff is the problem that is the problem of the stuff is the problem that
is the problem of the stuff is the problem that is the problem of the stuff is the problem
that is the problem of the stuff is the problem that is the problem of

Improved My goal as a text generator is the same as the same as well, in the right exists of an
and are aracing because of the test in the card for the first solution to the problems and
change deals in the world. when the first important process the most accident is a bit
more enough to fix something that is a bit more to think it has a bath of the problem
though. is the problem that the most set of each other progress of volume that

Word My goal as a text generator is a lot of nonsense is a lot of the upper body than the past
of the agriculture, and then i dont think you could be just a lot of important countries
and dont be able to create a the same way that the system is probably a bit of the way
to get some weeks and the mind is going to be a bit of a them from the past for the
universe, and i think it is a good idea and something in the book, but i dont think you
have a lot of the bond

Word (Shakespeare) My goal as a text generator is a woman in the crown
and in the grave of your grievous son.

grumio
my sovereign is my name. i am not in the honour and the very father to a man.

petruchio
i have for the blushing story of the part
of a world in thy worm of troth.

juliet
but i pray you, sir, sir, i am a world with the part
of their knave of the world of death,
for you be a commons must have much that he will be a time,
but i am a bond of love.

Fig. 3. Example outputs from the various models when provided with the seed text “My goal as a text generator is”

that it has a sense of where spaces belong, and what a
word looks like. This may seem insignificant, but it shows
that the model is learning some key information about the
way words and sentences are structured. The improved model
is where this starts getting a bit more interesting, because
with the temperature adjustments in place the sentences have
significantly more variance to them, and things like periods
start showing up in the text at fairly reasonable intervals. The
words don’t seem to be approaching anything close to actual
sentences in the character model though, they are pretty clearly
incoherent strings of words. A final thing to point out is that
this model starts spelling things incorrectly, such as “aracing”,
this is an interesting case where if the temperature causes a
weird character to be injected, the model still tries to correct
for it by turning it into something it thinks is reasonable.

The word models is where things become even more in-
teresting, because reading the text generated with the word
model, you can see glimpses of proper grammar and sentence
structure happening. The sentences are very clearly run on

sentences, and there isn’t anything completely intelligible, but
it has now figured out how to use conjunctives, and it is
displaying some evidence that it understands what a verb and
a subject is. On some of the text that was being generated
by the word model I noticed quirky things with the way
I write that were clearly showing up in the generated text.
Things such as starting messages with the phrase ”Yeah, . . . ”
or responding with ”mhm” followed by a new line and then an
actual sentence of response. There were also instances where
the model built URLs by itself, mostly links to youtube videos,
which did not actually exist but were convincing. The final
model is the same word model but was trained using a large
set of shakespearean dialogues instead of my own dataset. The
change in dataset starts to paint a picture of the strength of the
model, and makes me suspect that if I can improve and expand
the dataset more the model may get stronger as a result. We
can see with the Shakespearean dialogue that the sentences
are much more structured, and the dialogue format of the text
is displayed very clearly. The line lengths are clearly much



shorter than the text generating using my own dataset, which
shows it has some understanding of how long lines in the
source text are. This helps show that the model has reasonably
good transfer learning. These results make it obvious that there
is room for improvement, but the direction of improvement
isn’t entirely clear at this point.

G. Future Plans

I think this problem is quite fascinating, and I do have plans
to expand and improve my solution, partially because of my
own interest, and partially because I think that I’ve learned
and will continue to learn a lot by iteratively improving this
model. There are still a few open questions for myself that I
would like to answer. The first is whether or not the reason
my current model does not produce more coherent sentences
is simply because my dataset is too small. To answer this, I
plan to explore a larger public dataset to test my model on,
and see how it performs with longer training times and more
data to train using. Second is whether I can adapt the data
I have to a Seq2Seq model, and start approaching a model
that is context sensitive. The reason I did not move forward
with a Seq2Seq model yet is because Tensorflow does not
have a Seq2Seq primitive, and I felt that focusing my time on
trying to build something myself would be a poor use of time
rather than focusing on gathering my presentation materials
and report. My dataset currently only contains text that I have
written, but I suspect I can pull the messages I was responding
to in a reasonable manner to build a dataset that is closer
to a machine translation problem. For example I could use
timestamps and the previous few messages from others to be
fed in as the context of my model, with the assumption that in
most conversations I am probably replying to things that were
recently said by others. This would significantly reduce the
overall size of my dataset, but would provide better context.
I think what I will find is that my actual problem is in fact
with my dataset, and that if I had a larger dataset my model
would perform much better overall. The output of a Seq2Seq
model really shouldn’t be much better overall than my existing
model at generating coherent text, which leads me to believe
that my model itself could still be improved on with respect to
generating text, or that I’ve hit an impasse and my problem is
unlikely to be solved without a larger dataset. One datasource
that I hadn’t pulled from for my dataset was emails that I have
sent, and if I were to explore that further it might expand my
dataset a lot, so that may be something else I try as well.

III. CONCLUSION

I wanted to explore techniques in NLG and NLP through the
idea of generating text with a corpus of text that I had written.
When I set out my initial goals for this project, included in the
goals were creating a dataset of text I had written, building a
model that would generate text based on this corpus, iterating
on this model, building a web frontend that could interact
with this model, and eventually adding contextual awareness
into the model. Even when I set the final goal of contextual
awareness, I was aware that this was a big ask for the amount

of time that we had and the amount of data that I had available.
I don’t think my failure to meet this particular goal is reflective
of a failure on my part, but speaks to the overall difficulty of
the problem I was exploring.

I did successfully build a reasonably large corpus of text that
I had written, with the earliest samples dating back 10 years
and the most recent from weeks ago. I did successfully build
an RNN model trained on this dataset, and it does generate
text using words from me own lexicon, and captures some
of the hallmarks of my writing style, but not fully coherent
or convincing text. I did successfully build a page that can
be used to experiment with all the models I had built, and
compare how well they perform. From this perspective, I think
I accomplished what I had set out to realistically accomplish.
I still think this is an interesting problem, and that it would be
neat to have better results that are closer to realistic sentences,
so this will probably remain a toy project that I work on to try
and improve, and to work towards getting a Seq2Seq model
working. I would like to move my understanding much closer
to the cutting edge work being done by Google’s Deepmind
and OpenAI, because I think the future of NLP and NLG is
very exciting, and I’d be interested in watching it closer than
simply from the sidelines.

REFERENCES

[1] Daniel Adiwardana et al. Towards a Human-like Open-
Domain Chatbot. 2020. arXiv: 2001.09977.

[2] Jason Brownlee. Text Generation With LSTM Re-
current Neural Networks in Python with Keras.
Machine Learning Mastery. 2016. URL: https : / /
machinelearningmastery . com / text - generation - lstm -
recurrent-neural-networks-python-keras/.

[3] Alex Graves. “Generating Sequences With Recurrent
Neural Networks”. In: CoRR abs/1308.0850 (2013).
arXiv: 1308.0850.

[4] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-
term Memory”. In: Neural computation 9 (Dec. 1997),
pp. 1735–80.

[5] W. John Hutchins. “The Georgetown-IBM Experiment
Demonstrated in January 1954”. In: Machine Transla-
tion: From Real Users to Research. Ed. by Robert E.
Frederking and Kathryn B. Taylor. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 102–114. ISBN:
978-3-540-30194-3.

[6] Tomas Mikolov et al. “Recurrent neural network based
language model”. In: Proceedings of the 11th Annual
Conference of the International Speech Communica-
tion Association, INTERSPEECH 2010 2 (Jan. 2010),
pp. 1045–1048.

[7] Xiao Sun et al. “Emotional Conversation Generation
Based on a Bayesian Deep Neural Network”. In: ACM
Trans. Inf. Syst. 38.1 (Dec. 2019). ISSN: 1046-8188.

[8] Ilya Sutskever, James Martens, and Geoffrey Hinton.
“Generating Text with Recurrent Neural Networks”. In:
Proceedings of the 28th International Conference on



Machine Learning (ICML-11) (Jan. 2011), pp. 1017–
1024.

[9] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. “Se-
quence to Sequence Learning with Neural Networks”.
In: CoRR abs/1409.3215 (2014). arXiv: 1409.3215.

[10] Jian Tang et al. “Context-aware Natural Language Gen-
eration with Recurrent Neural Networks”. In: (2016).
arXiv: 1611.09900.

[11] Tensorflow - Use a GPU. tensorflow, 2020. URL: https:
//www.tensorflow.org/guide/gpu.

[12] Text generation with an RNN. tensorflow, 2020. URL:
https : / / www . tensorflow . org / tutorials / text / text
generation.

[13] A. M. Turing. “Computing Machinery and Intelli-
gence”. In: Mind LIX.236 (Oct. 1950), pp. 433–460.
ISSN: 0026-4423.

[14] Tsung-Hsien Wen et al. “Multi-domain Neural Network
Language Generation for Spoken Dialogue Systems”.
In: (2016). arXiv: 1603.01232.


